Sampling Multiple Scoring Functions Can Improve Protein Loop Structure Prediction Accuracy
نویسندگان
چکیده
منابع مشابه
Sampling Multiple Scoring Functions Can Improve Protein Loop Structure Prediction Accuracy
Accurately predicting loop structures is important for understanding functions of many proteins. In order to obtain loop models with high accuracy, efficiently sampling the loop conformation space to discover reasonable structures is a critical step. In loop conformation sampling, coarse-grain energy (scoring) functions coupling with reduced protein representations are often used to reduce the ...
متن کاملProtein Secondary Structure Prediction: How to Improve Accuracy by Integration
In this paper a technique to improve protein secondary structure prediction is proposed. The approach is based on the idea of combining the results of a set of prediction tools, choosing the most correct parts of each prediction. The correctness of the resulting prediction is measured referring to accuracy parameters used in several editions of CASP. Experimental evaluations validating the prop...
متن کاملCan computationally designed protein sequences improve secondary structure prediction?
Computational sequence design methods are used to engineer proteins with desired properties such as increased thermal stability and novel function. In addition, these algorithms can be used to identify an envelope of sequences that may be compatible with a particular protein fold topology. In this regard, we hypothesized that sequence-property prediction, specifically secondary structure, could...
متن کاملMachine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening.
Docking tools to predict whether and how a small molecule binds to a target can be applied if a structural model of such target is available. The reliability of docking depends, however, on the accuracy of the adopted scoring function (SF). Despite intense research over the years, improving the accuracy of SFs for structure-based binding affinity prediction or virtual screening has proven to be...
متن کاملThe Impact of Protein Structure and Sequence Similarity on the Accuracy of Machine-Learning Scoring Functions for Binding Affinity Prediction
It has recently been claimed that the outstanding performance of machine-learning scoring functions (SFs) is exclusively due to the presence of training complexes with highly similar proteins to those in the test set. Here, we revisit this question using 24 similarity-based training sets, a widely used test set, and four SFs. Three of these SFs employ machine learning instead of the classical l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Chemical Information and Modeling
سال: 2011
ISSN: 1549-9596,1549-960X
DOI: 10.1021/ci200143u